Subproject A4

Mathematical Models and Methods for Optimal Combinations of Passive and Active Components

The goal of this subproject is the development of efficient mathematical optimization algorithms for a comprehensive and robust design of load-carrying structures to immunize them against uncertainty and to maximize resilience. In particular, dynamic loads are considered, complex active elements are positioned optimally and methods to identify model uncertainty are developed.
[1] Platz, R., Ondoua, S., Habermehl, K., Bedarff, T., Hauer, T., Schmitt, S., Hanselka, H.: Approach to validate the influences of uncertainties in manufacturing on using load-carrying structures, USD 2010, Leuven, 2010.

[2] Wiebel, M., Engelhardt, R., Habermehl, K.: Uncertainty in process chains and the calculation of their propagation via Monte-Carlo Simulation, 12th International Dependency and Structure Modelling Conference, Cambridge, UK, 2010.

[3] Mosch, L., Adolph, S., Betz, R., Eckhardt, J., Tizi, A., Mathias, J., Habermehl, K., Bohn, A., Ulbrich, S.: Control of Uncertainties within an interdisciplinary design approach of a robust high heel, Uncertainties2012, Maresias-SP, Brasilien, 2012.

[4] Mosch, L., Adolph, S., Betz, R., Eckhardt, J., Tizi, A., Mathias, J., Bohn, A., Habermehl, K., Ulbrich, S.: Control of Uncertainties within an Interdisciplinary Design Approach of a Robust High Heel. Journal of the Brazilian Society of Mechanical Sciences and Engineering 34, pp. 597–603, 2012.

[5] Mars, S.: Mixed-Integer Semidefinite Programming with an Application to Truss Topology Design,
Dissertation, FAU Erlangen-Nürnberg, 2013.

[6] Habermehl, K., Ulbrich, S.: Achilles High Heel – Mach einen Schuh draus!. Mitteilungen der
Deutschen Mathematiker Vereinigung (DMV), pp. 79-83, 2013.

[7] Habermehl, K.: Robust Optimization of Active Trusses via Mixed-Integer Semidefinite Programming, Dissertation, TU Darmstadt, 2014.

[8] Melzer, C. M., Krech, M., Kristl, L., Freund, T., Kuttich, A., Zocholl, M., Groche, P., Kohler, M., Platz, R.: Methodical Approaches to Describe and Evaluate Uncertainty in the Transmission Behavior of a Sensory Rod, Applied Mechanics and Materials 807, pp. 205–217, 2015.

[9] Gally, T., Gehb, C. M., Kolvenbach, P., Kuttich, A., Pfetsch, M. E., Ulbrich, S.: Robust Truss Topology Design with Beam Elements via Mixed Integer Nonlinear Semidefinite Programming, Applied Mechanics and Materials 807, pp. 229–238, 2015.

[10] Gally, T., Pfetsch, M. E., Ulbrich, S.: A Framework for Solving Mixed-Integer Semidefinite Programs, Optimization Methods and Software, 2017. To appear.

Subproject Managers

Photo Name Contact
Prof. Dr. rer. nat. Alexander Martin
Prof. Dr. Marc Pfetsch
Prof. Dr. Stefan Ulbrich